A quantitative variational phase field framework

نویسندگان

چکیده

The finite solid–liquid interface width in phase field models results non-equilibrium effects, including solute trapping. Prior modeling has shown that this extra degree of freedom, when compared to sharp-interface models, trapping is well captured realistic parameters, such as width, are employed. However, increasing the which desirable for computational reasons, leads artificially enhanced thus making it difficult model departure from equilibrium quantitatively. In present work, we develop a variational guarantees temporal decrease free energy with independent kinetic equations solid and liquid phases. Separate concentrations obviate assumption point wise equality diffusion potentials, done previous works. Non-equilibrium effects trapping, drag kinetics can be introduced controlled manner model. addition, parameters tuned obtain “experimentally-relevant” while using significantly larger widths than prior efforts. A comparison these other suggests about three twenty-five times current best-in-class employed depending upon material system at hand leading speed-up by factor W(d+2), where W d denote spatial dimension, respectively. Finally capacity phenomena demonstrated simulating oscillatory instability formation bands.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative phase-field modeling for boiling phenomena.

A phase-field model is developed for quantitative simulation of bubble growth in the diffusion-controlled regime. The model accounts for phase change and surface tension effects at the liquid-vapor interface of pure substances with large property contrast. The derivation of the model follows a two-fluid approach, where the diffuse interface is assumed to have an internal microstructure, defined...

متن کامل

Train Scheduling Problem - Phase I: A General Simulation Modeling Framework

One of the important problems in management of railway systems is train scheduling problem. This is the problem of determining a timetable for a set of trains that do not violate infrastructure capacities and satisfies some operational constraints. In this study, a feasible timetable generator framework for stochastic simulation modeling is developed. The objective is to obtain a feasible tr...

متن کامل

A quantitative multi-phase field model of polycrystalline alloy solidification

A multi-phase field model for quantitative simulations of polycrystalline solidification of binary alloys is introduced. During the freegrowth stage of solidification, the model exploits the thin-interface analysis developed by Karma [3] in order to realistically capture bulk phase diffusion and the sharp interface corrections predicted by traditional models of solidification. During grain boun...

متن کامل

Variational Segmentation Framework

Mesh segmentation remains a difficult task, complicated by the fact that our notion of what constitutes a meaningful segmentation is domain-specific. The variational partitioning scheme recently introduced by Cohen-Steiner et. al. provides an attractive and efficient framework in which to perform segmentation. However much scope remains for generalisation, as demonstrated by Kraevoy et. al. in ...

متن کامل

A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems

The aimed properties of the interpolation functions used in quantitative phase-field models for two-phase systems do not extend to multi-phase systems. Therefore, a new type of interpolation functions is introduced that has a zero slope at the equilibrium values of the non-conserved field variables representing the different phases and allows for a thermodynamically consistent interpolation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Materialia

سال: 2023

ISSN: ['1873-2453', '1359-6454']

DOI: https://doi.org/10.1016/j.actamat.2023.118897